Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We provide one of the most comprehensive metallicity studies at z∼4 by analyzing the UV/optical Hubble Space Telescope photometry and rest-frame Very Large Telescope (VLT)/FORS2 UV and VLT/XSHOOTER optical spectra of J0332−3557, a gravitationally lensed galaxy magnified by a factor of 20. With a 5σdetection of the auroral Oiii]λ1666 line, we are able to derive a direct gas metallicity estimate for our target. We findZgas , which is compatible with an increase of both the gas fraction and the outflow metal loading factor fromz∼ 0 toz∼ 4. J0332−3557 is the most metal-rich individual galaxy atz∼ 4 for which the C/O ratio has been measured. We derive a low log(C/O) = −1.02 ± 0.2, which suggests that J0332−3557 is in the early stages of interstellar medium carbon enrichment driven mostly by massive stars. The low C/O abundance also indicates that J0332−3557 is characterized by a low star formation efficiency, higher yields of oxygen, and longer burst duration. We find that EWCIII]1906,9is as low as ∼3 Å, and the main drivers of the low EWCIII]1906,9are the higher gas metallicity and the low C/O abundance. J0332−3557 is characterized by one diffuse and two more compact regions ∼1 kpc in size. We find that the carbon emission mostly originates in the compact knots. Our study on J0332−3557 serves as an anchor for studies investigating the evolution of metallicity and C/O abundance across different redshifts.more » « less
-
Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at , a moderately lensed galaxy ( ) with an intrinsic UV magnitude of . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z⊙ < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M⊙. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before.more » « less
-
In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure.more » « less
-
Abstract Observations of high-redshift galaxies ( z > 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogs to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use Hubble Space Telescope/Cosmic Origins Spectrograph and Large Binocular Telescope/Multi-Object Double Spectrographs spectra to study two nearby EELGs, J104457 and J141851. The far-UV spectra indicate that these two galaxies contain stellar populations with ages ≲10 Myr and metallicities ≤0.15 Z ⊙ . We use photoionization modeling to compare emission lines from models of single-age bursts of star formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O iii ] or very-high-ionization lines like He ii or O iv ]. Photoionization modeling using the stellar populations fit from the UV continuum similarly is not capable of reproducing the very-high-energy emission lines. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high-ionization lines of He ii and O iv ]. We find that we need a blackbody of 80,000 K and ∼45%–55% of the luminosity from the blackbody and young stellar population to reproduce the very-high-ionization lines while simultaneously reproducing the low-, intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogs.more » « less
-
Abstract The dispersion in chemical abundances provides a very strong constraint on the processes that drive the chemical enrichment of galaxies. Due to its proximity, the spiral galaxy M33 has been the focus of numerous chemical abundance surveys to study the chemical enrichment and dispersion in abundances over large spatial scales. The CHemical Abundances Of Spirals project has observed ∼100 H ii regions in M33 with the Large Binocular Telescope (LBT), producing the largest homogeneous sample of electron temperatures ( T e ) and direct abundances in this galaxy. Our LBT observations produce a robust oxygen abundance gradient of −0.037 ± 0.007 dex kpc −1 and indicate a relatively small (0.043 ± 0.015 dex) intrinsic dispersion in oxygen abundance relative to this gradient. The dispersions in N/H and N/O are similarly small, and the abundances of Ne, S, Cl, and Ar relative to O are consistent with the solar ratio as expected for α -process or α -process-dependent elements. Taken together, the ISM in M33 is chemically well-mixed and homogeneously enriched from inside out, with no evidence of significant abundance variations at a given radius in the galaxy. Our results are compared to those of the numerous studies in the literature, and we discuss possible contaminating sources that can inflate abundance dispersion measurements. Importantly, if abundances are derived from a single T e measurement and T e – T e relationships are relied on for inferring the temperature in the unmeasured ionization zone, this can lead to systematic biases that increase the measured dispersion up to 0.11 dex.more » « less
-
Abstract Galaxy formation and evolution are regulated by the feedback from galactic winds. Absorption lines provide the most widely available probe of winds. However, since most data only provide information integrated along the line of sight, they do not directly constrain the radial structure of the outflows. In this paper, we present a method to directly measure the gas electron density in outflows (ne), which in turn yields estimates of outflow cloud properties (e.g., density, volume filling factor, and sizes/masses). We also estimate the distance (rn) from the starburst at which the observed densities are found. We focus on 22 local star-forming galaxies primarily from the COS Legacy Archive Spectroscopic SurveY (CLASSY). In half of them, we detect absorption lines from fine-structure excited transitions of Siii(i.e., Siii*). We determinenefrom relative column densities of Siiiand Siii*, given Siii* originates from collisional excitation by free electrons. We find that the derivednecorrelates well with the galaxy’s star formation rate per unit area. From photoionization models or assuming the outflow is in pressure equilibrium with the wind fluid, we getrn∼ 1–2r*or ∼5r*, respectively, wherer*is the starburst radius. Based on comparisons to theoretical models of multiphase outflows, nearly all of the outflows have cloud sizes large enough for the clouds to survive their interaction with the hot wind fluid. Most of these measurements are the first ever for galactic winds detected in absorption lines and, thus, will provide important constraints for future models of galactic winds.more » « less
-
Abstract Stellar population models produce radiation fields that ionize oxygen up to O +2 , defining the limit of standard H ii region models (<54.9 eV). Yet, some extreme emission-line galaxies, or EELGs, have surprisingly strong emission originating from much higher ionization potentials. We present UV HST/COS and optical LBT/MODS spectra of two nearby EELGs that have very high-ionization emission lines (e.g., He ii λλ 1640,4686 C iv λλ 1548,1550, [Fe v ] λ 4227, [Ar iv ] λλ 4711,4740). We define a four-zone ionization model that is augmented by a very high-ionization zone, as characterized by He +2 (>54.4 eV). The four-zone model has little to no effect on the measured total nebular abundances, but does change the interpretation of other EELG properties: we measure steeper central ionization gradients; higher volume-averaged ionization parameters; and higher central T e , n e , and log U values. Traditional three-zone estimates of the ionization parameter can underestimate the average log U by up to 0.5 dex. Additionally, we find a model-independent dichotomy in the abundance patterns, where the α /H abundances are consistent but N/H, C/H, and Fe/H are relatively deficient, suggesting these EELGs are α /Fe-enriched by more than three times. However, there still is a high-energy ionizing photon production problem (HEIP 3 ). Even for such α /Fe enrichment and very high log U s, photoionization models cannot reproduce the very high-ionization emission lines observed in EELGs.more » « less
-
Abstract Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range.more » « less
-
Abstract We present new observations of the central 1 kpc of the M82 starburst obtained with the James Webb Space Telescope near-infrared camera instrument at a resolutionθ∼ 0.″05–0.″1 (∼1–2 pc). The data comprises images in three mostly continuum filters (F140M, F250M, and F360M), and filters that contain [Feii] (F164N), H2v= 1 → 0 (F212N), and the 3.3μm polycyclic aromatic hydrocarbon (PAH) feature (F335M). We find prominent plumes of PAH emission extending outward from the central starburst region, together with a network of complex filamentary substructures and edge-brightened bubble-like features. The structure of the PAH emission closely resembles that of the ionized gas, as revealed in Paschenαand free–free radio emission. We discuss the origin of the structure, and suggest the PAHs are embedded in a combination of neutral, molecular, and photoionized gas.more » « less
An official website of the United States government
